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The nature of the steady-state viscous flow between two large rotating disks has 
often been discussed, usually qualitatively, in the literature. Using a version of 
the numerical method described in the preceding paper (Pearson 1965), digital 
computer solutions for the time-dependent case are obtained (steady-state 
solutions are then obtainable as limiting cases for large times). Solutions are 
given for impulsively started disks, and for counter-rotating disks. Of interest 
is the fact that, at high Reynolds numbers, the solution for the latter problem is 
unsymmetrical; moreover, the main body of the fluid rotates at a higher angular 
velocity than that of either disk. 

1. Introduction 
By assuming the axial velocity to be radius-independent, K&rm&n (1921) 

obtained a set of ordinary differential equations describing the steady-state 
viscous flow above an inhitely large rotating disk; numerical solutions of these 
equations have been given by Cochran (1934). This problem is of considerable 
interest, since it provides one of the few cases in which exact solutions of the 
Navier-Stokes equations are feasible. Batchelor ( 1951) has generalized the 
K&rm&n method to the case of two rotating disks, and has discussed semi- 
quantitatively the nature of the steady flow between the two disks. Further 
comments have been made by Stewartson (1953). In  some cases, such as that in 
which the two disks rotate in opposite directions, there has been some question 
in the literature as to the character of the flow. 

A time-dependent disk problem has been considered by Greenspan & Howard 
(1963); by linearkingthe equations of motion, they were able to anaIyse the case 
in which the two disks, rotating in unison, have their common angular velocity 
impulsively altered by a small amount. They found that the state of rigid 
rotation was restoredin a dimensionless time of order R) (where R is the Reynolds 
number QL2/v), which represents the build-up time for an Ekman boundary 
layer; superimposed on this decaying normal mode are a number of decaying 
oscillatory modes which oscillate with twice the frequency of rotation. More 
recent work by Greenspan & Weinbaum (1964) extends the analysis to include 
higher-order terms in this ' spin-up ' problem. Another linearized time-dependent 
disk problem, in which a single disk oscillates with a frequency o about a steady 
rotation velocity Q, has been analysed by Benney (1964). For o N 2Q, a reson- 
ance phenomenon involving large normal velocities can be produced. 
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I n  the present paper, we describe a method for obtaining exact numerical 
solutions for the flow between two infinite rotating disks, when each of the disks 
is given an arbitrary time-dependent rotational velocity. As we will see in § 2, 
solutions for the time-dependent case can be obtained by assuming the same 
kind of radius-dependence used by KArm&n and Batchelor for the time- 
independent case; the result is a set of partial differential equations in one space 
variable and in time. These equations may be solved numerically, in a way very 
similar to that described for the general two-dimensional problem in the pre- 
ceding paper. The numerical results can be checked by re-calculating with 
different mesh spacings, and also by comparison with analytical solutions (such 
as that for the initial motion in a spin-up problem) available for special cases. 

Results are presented for cases in which (a)  one disk is held fixed, and the other 
disk is impulsively started from rest, (b )  both disks are impulsively started from 
rest in opposite directions, with the same angular velocity, and (c) both disks are 
impulsively started from rest in opposite directions, with different angular 
velocities. Results for the case in which the common angular velocity of the two 
disks is impulsively altered from some initial value are given in Greenspan & 
Weinbaum (1964). Steady-state solutions for a variety of rotating disk problems 
are obtained from these time-dependent solutions by simply allowing the new 
disk velocities to persist for a very long time. As might be expected, the value of 
the Reynolds numbers has a strong influence on the character of these various 
solutions. Of particular interest is the fact that at higher Reynolds numbers, 
there is no stable symmetrical flow between two counter-rotating disks; however, 
an unsymmetrical flow, in which the main body of the fluid is rotating with one 
of the disks (but at a higher angular velocity than that disk), is possible. (It is 
not known whether such a flow would be unstable with respect to three- 
dimensional disturbances.) Both in this case, and in that in which only one disk 
rotates, there can be a number of cells of inflow and outflow. 

2. Equations of motion 
We consider the axisymmetric time-dependent incompressible viscous flow 

between two infinite rotating disks. The lower disk occupies the plane z = 0 of 
figure 1, and the upper disk is placed with its plane parallel to the plane z = 0, 
and a distance L above it. Both disks are allowed to rotate about the z-axis, with 
angular velocities Q,(t) and Q,(t)  (lower and upper disks, respectively), which 
are arbitrarily prescribed functions of time t .  As indicated in figure 1, the 
co-ordinates of any point are specified by (r,  8, z), and the corresponding fluid 
velocities are denoted by (u, v, w). All velocities are measured with respect to 
an inertial system at rest. The condition of incompressibility requires that 

(ru)r+ (TW)~ = 0, (1) 

(2) 

(3) 

(4) 

and the Navier-Stokes equations reduce to 

u, + uru - v2/r + uz w = - p-lpr + v(u, + ur/r + uzz - u/r2), 

vt + vru + uvlr + vzw = v(v, + vr/r + v,,. - v/r2), 
w, + w,u + w, w = - p-lpZ + v(w, + wr/r + wzz), 
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where p is pressure, p is density, v is kinematic viscosity, and subscripts indicate 
partial differentiation. We introduce dimensionless variables, indicated by u*, 
for example, via r = r*L, z = z*L, t = t*/Q,, u = u*LQo, v = v*LQo, w = w*LQo, 
p/p = (p/p)*L2Q& 0, = QfQ,, Q, = QZQ,, where Q, is a chosen reference value 
of angular velocity. The resulting equations for the dimensionless variables are 
identical with equations (1) through (4) ,  except that v is replaced by 1/R,  where 
the Reynolds number R is equal to L2Qo/v. We will assume this replacement to 
have been made, and will drop the asterisks, so that-with Y replaced by 1/R- 
equations (1) through (4) are now in dimensionless form. 

i w  

X 
FIGURE 1. Co-ordinate system. 

We look for solutions satisfying 
w = H(z, t ) .  

Substitution of (5) into (1) shows that 

u = -irHJz,t). (6) 
From (a ) ,  it now follows that%, = 0, so thatp, must be a function of r and t alone; 
thus p, = $(r ,  t).  Substitution into (2) now shows that @/r2 - $(r ,  t ) / rp is a, func- 
tion of (z, t )  alone, say Gl(z, t) .  For z = 0, this result requires 

Q m  - 90.9 t ) / V  = GAO, t ) ,  
so that $/r  must be independent of r .  Denoting Q:(t) - Gl(O, t )  + Gl(z, t )  by G(z, t ) ,  

(7) 
the result is therefore that 

v = rG(z, t).  

Differentiation of (2) with respect to z yields 

(8) 

(9) 

If we can find functions G(z,t) and H(z , t ) ,  satisfying (8) and (9), and the 

HBd = R-lH zzsz - HH,, - 4GGz, 

Gt = R-'GzZ + GH, - G,H. 

and substitution for u, v, and w in (3) gives 

boundary conditions 

(10) 

Fluid Mech. 21 

G(0,t) = Ql(t) ,  G(1, t )  = a,@), 
H(O,t) = 0, 

H,(O, t )  = 0, 

H ( 1 , t )  = 0, 

Hz(l ,  t )  = 0, 
40 
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then equations (1) through (4), and the boundary conditions for no-slip viscous 
flow, will all be satisfied. 

The method of numerical solution of (8) and (9) is analogous to that used in the 
two-dimensional problem described in the preceding paper (Pearson 1965). 
Equation (8) is replaced by the coupled pair of equations 

H, = M (12) 

(whichareclearlyanalogous to (5) and (6) ofpearson 1965), and (9), ( l l ) ,  (12) are 
then replaced by their finite-difference analogues, in implicit form. For each 
time-step, (9) and (1 1) are used to obtain new mesh-point values of M and G, 
and (12) is then used to find the new value of H .  Equations (1 1) and (12) are 
hinged together on the first mesh point in from the two boundaries, a formula for 
H at these points which is accurate to second-order terms is used, and the correct 
new values of iW at these points are determined iteratively (with appropriate 
smoothing)-all as in the preceding paper. Of course, since there is only one 
space variable, the implicit difference equation for (1 1) is in tri-diagonal form and 
so may be solved very simply by Gaussian elimination; relaxation is not neces- 
sary. On the other hand, we have one additional equation, (9), to be used at each 
time-step. Also as in the preceding paper, it turns out that for large values of R, 
internal as well as boundary smoothing must be used during the iteration process. 
With this smoothing, there appear to be no stability restrictions on the size of 
the time-step; moreover, the implicit forms of the difference equation approxima- 
tions to (9) and (1 1) ensure high accuracy. 

In  many of the problems treated here, one or both boundary conditions were 
altered impulsively at t = 0. Under such conditions, finite-difference approxima- 
tions can lead to substantial errors for the first few time steps; to minimize these 
errors, the f i s t  time-step was divided into a number of subintervals and appro- 
priate pseudo boundary conditions chosen for the first few of these subintervals. 
A discussion of this method of handling impulsive boundary conditions is given 
in Pearson (1964). 

3. Verification of numerical solution 
Most of the results to be reported were checked by re-running the problem with 

different choices of space or time mesh. Comparison with the analysis of Green- 
span & Howard and Greenspan & Weinbaum for the case in which two disks 
have their common angular velocity changed by a small amount showed good 
agreement between the numerical and analytical results; this comparison is 
discussed in detail in Greenspan & Weinbaum (1964). We describe here a different 
method whereby the numerical results have been checked for the initial motion 
regime in certain cases. 

Consider the case in which the fluid is initially at rest, and in which the disk at 
x = 0 is impulsively given an angular velocity !2 = K ;  the disk at z = 1 is held 
fixed. We can anticipate, and verify a posteriori (or from the numerical calcula- 
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tions) that the non-linear terms in ( 9 )  will be negligible during the initial stages 
of the motion, so that the solution of ( 9 )  will be 

G ( z , t )  = K{erfc[z, /! /2Jt]-erfc[(2-~),/R/2Jt] 

where erfc = "1 e-cadE. 

For small t ,  only the first term in (13 )  is important. On the other hand, although 
the term HH,, will be negligible for sufficiently small H ,  we cannot discard the 
term -4GG, in (8), since this term provides the driving force-without it, the 
boundary condition (10) would give H = 0. Thus we replace (8) by 

+ erfc [ ( 2  + z) , /R/2,/t] - erfc [ ( 4  - z )  , /R/2,/t] + . . .}, (13)  
m 

Jn B 

H,,t = R-'H,,, - 4GGz, 

valid for small t. Two integrations with respect to z give 

where f ( t )  and w ( t )  are as yet undetermined functions of t .  We solve (14)  by 
taking a Laplace transform in time; before doing so, it is useful to simplify the 
function K2{erfc ( ~ , / ! / 2 , / t ) } ~  that appears under the integral sign, by approxi- 
mating i t  by a function whose time-transform is relatively simple. Such a 
function is any linear combination of erfc functions; we write 

(erfc (/3)}z N 0.4378 erfc (2.223,8) + 0.5457 erfc (1.401,8), (15 )  

which provides an excellent fit -f for all positive values of ,8. 
With this approximation, a transform of (14)  may be taken, and the resulting 

ordinary differential equation in z may be solved subject to the boundary condi- 
tions (10) (the transforms of the functionsf@) and w(t) are also thereby deter- 
mined). The inversion formula may next be applied, and the result for small t can 
be obtained by considering large values of s. Among the leading terms in the 
asymptotic expansion for H, is only one which does not depend on z (the other 
leading terms are negligible except near z = 0 or z = l ) ,  and this term gives 

] (16)  
0.4378 0.5457 

2 K 2 (  1/R W) t+ +--+...I( W ( 3 )  t2 ( 2 ~ 2 2 3 ) ~  + (2.223) + ( 1*401)2 + (1.401) * 
H, - ~ 

For small t ,  the computational results were in excellent agreement with (16) .  
Thus the t i  dependence was verified, the value of 4 was almost constant over 
the z-range ( 0 , l )  except near the two ends, and this almost-constant value of H, 
agreed with that calculated from (16) .  As a typical example of the numerical 
agreement, the value of H, for R = 100, K = 1 ,  t = 0.02 as given by (16)  is 
9-66 x whereas that obtained computationally (with 800 mesh points 
between z = 0 and z = 1, and with time steps of 0.001) was 9.63 x 

t The largest error is at B = 0, where the discrepancy is 0.0165 (relative to an exact 
value of unity). Elsewhere, the discrepancy is much smaller. Equation (15) was obtained 
by allowing the computer to carry out a search process for the coefficients on the right- 
hand side, with the object of minimizing the mem-square discrepancy between the two 
sides. 

40-2 
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4. Numerical results 
Figures 2,3,  and 4 give profiles at various times for G, H ,  H,, respectively, for 

the case in which one disk is impulsively given unit angular velocity at t = 0. 
Thus the fluid is at rest for t < 0; for t > 0, we have 8, = 1, 51, = 0. The value 
of R is 100. The appropriate value oft is marked on each profile. The dotted curves 
represent the Kkm&n-Cochran steady-state solution for the single-disk case. 

1 .o 

0.8 

0.6 

G 

0.4 

0.2 

0 

Single disk solution - _ _ _ _  

0.2 0.4 0.6 0.8 

FIWJFCE 2. G-profiles for various values oft. R = 100. Left-hand disk 
impulsively started with R = 1. 

Figures 5,6, and 7 give the corresponding results for R = 1000. Attention may 
be directed towards the different time regimes during the build-up of the motion, 
and towards the circulatory cells evident in the final motion. The increased value 
of G1 near the fixed disk, for the steady-state case, represents a similar situation 
to that encountered in a meteorological problem by Boedewadt (1940). 

Figure 8 gives the final values of G for the case of two counter-rotating disks, 
with R = 100. Here 8, = 1, and the various profiles correspond to Q, = - 1, 
- 0.9, - 0.5, - 0.25, - 0.1, and - 0-04. The dotted curves are profiles for lOH 
and H, for the case SZ, = - 0.5. It will be observed that, except for very small SZ,, 
most of the fluid (as measured axially) is rotating with the slower disk. This is 
perhaps not surprising, since the predominant axial motion towards the faster 
disk will carry the angular momentum associated with the slower disk towards 
the faster disk. 
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FIGURE 3. H profiles corresponding to figure 2. 

Single disk solution 

0 . 4 ~  

0.2 

0 

0.2 

200,300 I- - 

100 
,300 

- 0.4 1 

0 0.2 0.4 0.6 0.8 1.0 
z 

FIGURE 4. H, profiles corresponding to figure 2. 
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FIGURE 5. B-profiles for various values oft. R = 1000. Left-hand disk 
compulsively started with Q = 1. 
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F r o m  6. H profiles corresponding to figure 5. 
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FIGURE 7. H ,  profiles corresponding to figure 5. 
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FIGURE 8. Steady-state motion for two counter-rotating disks. R = 100; a, = 1;  
= - 1, -0.9, -0.5, -0.25, -0.1, -0.04. 
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In  figure 8, the G curve exhibits the symmetry of the motion for Ql = 1, 
Q, = - 1. At R = 1000, no such symmetry was obtained; figure 9 gives curves of 
G, H ,  H ,  for the steady-state motion for the case of two counter-rotating disks 
with R = 1000, Ql = 1, Q, = - 1. Most of the fluid is here rotating in the same 
direction as the disk at x = 0; this is simply an accident of computer round-off 
early in the motion, and the opposite solution-in which most of the fluid rotates 
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FIGURE 9. Profiles of G, H ,  H,, for steady-state motion between 
two counter-rotating disks with R = 1000. 

in the same direction as the disk at z = 1-was obtained computationally by 
simply starting the disk at z = 1 slightly before that at z = 0. This non- 
symmetrical solution starts developing at very early times; it is apparent that 
no symmetrical solution, stable to one-dimensional disturbances, can exist. 
Whether the solution given in figure 9 is stable to three-dimensional disturbances 
is not known. It is interesting that most of the fluid is rotating faster than either 
disk; physically, this is possible because of the requirement of conservation of 
angular momentum, as applied to initially slowly-rotating fluid migrating 
radially inwards, as well as towards the left-hand disk. 
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